The extreme points of a class of functions with positive real part

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some properties of analytic functions related with bounded positive real part

In this paper, we define new subclass of analytic functions related with bounded positive real part, and coefficients estimates, duality and neighborhood are considered.

متن کامل

construction of vector fields with positive lyapunov exponents

in this thesis our aim is to construct vector field in r3 for which the corresponding one-dimensional maps have certain discontinuities. two kinds of vector fields are considered, the first the lorenz vector field, and the second originally introced here. the latter have chaotic behavior and motivate a class of one-parameter families of maps which have positive lyapunov exponents for an open in...

15 صفحه اول

On A Class Of Multivalent Starlike Functions With A Bounded Positive Real Part

By introducing a new subcalss of p-valent functions with respect to (j, k)-symmetric points, we have obtained the integral representations and conditions for starlikeness by using differential subordination. Some already known results have been, incidentally, shown to be particular cases of the main results of the paper.

متن کامل

Harmonic Functions with Positive Real Part

In this paper, the class of harmonic functions f = h+ ḡ with positive real part and normalized by f(ζ) = 1, (|ζ| < 1) is studied, where h and g are analytic in U = {z : |z| < 1}. Some properties of this class are searched. Sharp coefficient relations are given for functions in this class. On the other hand, the author make use of Alexander integral transforms of certain analytic functions (whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin

سال: 1997

ISSN: 1370-1444

DOI: 10.36045/bbms/1105736866